Exercise 7.4.4

Show that Hermite's equation has no singularity other than an irregular singularity at $x=\infty$.

Solution

Hermite's equation is a second-order linear homogeneous ODE.

$$
y^{\prime \prime}-2 x y^{\prime}+2 \alpha y=0
$$

Since neither of the coefficients of y and y^{\prime} blow up, there are no singular points for finite values of x. In order to investigate the behavior at $x=\infty$, make the substitution,

$$
x=\frac{1}{z},
$$

in Hermite's equation.

$$
y^{\prime \prime}-2 x y^{\prime}+2 \alpha y=0 \quad \rightarrow \quad y^{\prime \prime}-\frac{2}{z} y^{\prime}+2 \alpha y=0
$$

Use the chain rule to find what the derivatives of y are in terms of this new variable.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d z} \frac{d z}{d x}=\frac{d y}{d z}\left(-\frac{1}{x^{2}}\right)=\frac{d y}{d z}\left(-z^{2}\right) \\
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d z}{d x} \frac{d}{d z}\left[\frac{d y}{d z}\left(-z^{2}\right)\right]=-\frac{1}{x^{2}}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)=-z^{2}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)
\end{aligned}
$$

As a result, the ODE in terms of z is

$$
\left[-z^{2}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)\right]-\frac{2}{z}\left[\frac{d y}{d z}\left(-z^{2}\right)\right]+2 \alpha y=0
$$

or after simplifying,

$$
z^{4} \frac{d^{2} y}{d z^{2}}+\left(2 z^{3}+2 z\right) \frac{d y}{d z}+2 \alpha y=0 .
$$

Divide both sides by z^{4} so that the coefficient of $d^{2} y / d z^{2}$ is 1 .

$$
\frac{d^{2} y}{d z^{2}}+\frac{2 z^{3}+2 z}{z^{4}} \frac{d y}{d z}+\frac{2 \alpha}{z^{4}} y=0
$$

At least one of the denominators is equal to zero at $z=0$, so $z=0$ is a singular point. Since at least one of the following limits is infinite, it is in fact irregular.

$$
\begin{aligned}
& \lim _{z \rightarrow 0} z\left(\frac{2 z^{3}+2 z}{z^{4}}\right)=\lim _{z \rightarrow 0}\left(2+\frac{2}{z^{2}}\right)=\infty \\
& \lim _{z \rightarrow 0} z^{2}\left(\frac{2 \alpha}{z^{4}}\right)=\lim _{z \rightarrow 0} \frac{2 \alpha}{z^{2}}=\infty
\end{aligned}
$$

Therefore, $x=\infty$ is an irregular singular point of the Hermite equation.

